

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

STINFO COPY

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

FORMAL MODELS OF COMPOSABLE SECURITY
ARCHITECTURES

FEBRUARY 2012

FINAL TECHNICAL REPORT

 ROME, NY 13441 UNITED STATES AIR FORCE AIR FORCE MATERIEL COMMAND

AFRL-RI-RS-TR-2012-054

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for any
purpose other than Government procurement does not in any way obligate the U.S. Government.
The fact that the Government formulated or supplied the drawings, specifications, or other data
does not license the holder or any other person or corporation; or convey any rights or
permission to manufacture, use, or sell any patented invention that may relate to them.

This report was cleared for public release by the 88th ABW, Wright-Patterson AFB Public
Affairs Office and is available to the general public, including foreign nationals. Copies may be
obtained from the Defense Technical Information Center (DTIC) (http://www.dtic.mil).

AFRL-RI-RS-TR-2012-054 HAS BEEN REVIEWED AND IS APPROVED FOR
PUBLICATION IN ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

FOR THE DIRECTOR:

 /s/ /s/
STEVEN T. JOHNS, Chief PAUL ANTONIK, Technical Advisor
Trusted Systems Branch Computing & Communications Division
 Information Directorate

This report is published in the interest of scientific and technical information exchange, and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing this burden to Washington Headquarters Service, Directorate for Information Operations and Reports,
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget,
Paperwork Reduction Project (0704-0188) Washington, DC 20503.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

FEB 2012
2. REPORT TYPE

Final Technical Report
3. DATES COVERED (From - To)

OCT 2008 – SEP 2011
4. TITLE AND SUBTITLE

FORMAL MODELS OF COMPOSABLE SECURITY
ARCHITECTURES

5a. CONTRACT NUMBER
In House

5b. GRANT NUMBER
N/A

5c. PROGRAM ELEMENT NUMBER
61102F

6. AUTHOR(S)

Dilia E. Rodriguez

5d. PROJECT NUMBER
23T4

5e. TASK NUMBER
PR

5f. WORK UNIT NUMBER
OJ

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Air Force Research Laboratory/RITA
525 Brooks Road
Rome, NY 13441-4505

8. PERFORMING ORGANIZATION
REPORT NUMBER

 N/A

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Air Force Research Laboratory/Information Directorate
Rome Research Site
26 Electronic Parkway
Rome NY 13441

10. SPONSOR/MONITOR'S ACRONYM(S)
 AFRL/RI

11. SPONSORING/MONITORING
AGENCY REPORT NUMBER
AFRL-RI-RS-TR-2012-054

12. DISTRIBUTION AVAILABILITY STATEMENT
Approved for Public Release; Distribution Unlimited. PA# 88ABW-2012-0310
Date Cleared: 19 JAN 2012

13. SUPPLEMENTARY NOTES

14. ABSTRACT
Much of the research and practice in security is concerned with particular enforcement mechanisms, and implementation or code-
level vulnerabilities. This research takes an information-flow approach, which is implementation-independent, and applies it to the
specification and analysis of security properties of component-based architectures. The goal was to develop rigorous but lightweight
formal support for the development of secure systems. The developed formal models and inference systems are rigorous because
their underlying foundation is Mantel's compositional framework for information-flow security, and they are specified in Maude,
which is based on rewriting logic, a general yet simple logic of concurrent change. They are lightweight because they are object-
based, and automatically generate proofs induced by pattern-based queries. They can be used to explore the design space of systems
prior to implementation.

15. SUBJECT TERMS

formal methods, security architectures, information-flow security

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

 20

19a. NAME OF RESPONSIBLE PERSON
DILIA E. RODRIGUEZ

a. REPORT
U

b. ABSTRACT
U

c. THIS PAGE
U

19b. TELEPHONE NUMBER (Include area code)
N/A

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

Contents

1 SUMMARY 1

2 INTRODUCTION 3

3 METHODS, ASSUMPTIONS, AND PROCEDURES 5
3.1 Information-Flow Security . 5
3.2 An Object-Based Model of Security Architectures 6
3.3 A Modular and Reflective Model of Security Architectures . . 8

4 RESULTS AND DISCUSSION 12

5 CONCLUSIONS 13

6 REFERENCES 14

LIST OF ACRONYMS 16

i

1 SUMMARY

Security requirements are varied and complex, and critical to many systems.
Much of the research and practice of security is concerned with particular
enforcement mechanisms, and implementation or code-level vulnerabilities.
This research complements those approaches by taking an information-flow
approach, which is implementation-independent, and applying it to the spec-
ification and analysis of information-flow security properties of component-
based architectures. The goal was to develop rigorous, yet lightweight, formal
methods to support the development of secure systems.

The developed formal models and inference systems are rigorous because
they have as the underlying foundation on security Mantel’s modular compo-
sitional framework for information-flow security, and they are specified in the
Maude language, which is based on rewriting logic, a general yet simple logic
of concurrent change. They are lightweight because they are object-based,
and automatically generate proofs induced by pattern-based queries. With
them it is possible to explore the design space of applications or systems prior
to implementation.

Two classes of formal models for security architectures were developed.
With both, the deduction of the global security properties of the architecture
proceeds by the transformation of the given model for a component-based
architecture into that of a single composite component, according to Mantel’s
compositional results on composition of information-flow properties, which
would have the global security properties the architecture satisfies.

The first is object-based, and models a component as a configuration of
objects that represent the satisfaction of elementary information-flow secu-
rity properties called Basic Security Predicates (BSPs). There is one class
for each kind of BSP. With this kind of model it is easy to explore the secu-
rity properties of a design. Various optimizations to reduce the state-space
explosion problem were investigated, including parameterized specifications
tailored to an application.

The second class of models is also object-based, and addresses the state-
space explosion problem in a more fundamental way. A model is layered:
one layer for the architecture of the underlying component-based architec-
ture, and one layer for the architecture or structure of the corresponding
security properties. It is a graph with inter- and intra-layer edges. It is also
hierarchical: objects that model components of each layer have as attributes
architectures that implement them. This serves two purposes. First, such

1

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

a component documents global properties of the nested architecture. Sec-
ond, it offers a natural and significant way to reduce the search space of the
deduction process by effectively removing the nested architecture from the
distributed state.

This research is a contribution towards formal methods to support the
development of secure systems. Some of the techniques developed in this
work could be applied to develop modular and efficient formal models in
other kinds of applications.

2

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

2 INTRODUCTION

Security requirements are critical for many systems, and they should be con-
sidered as early as possible in their design. However, presently much research
and practice in security is concerned with particular enforcement mecha-
nisms, and implementation or code-level vulnerabilities. These approaches
necessarily have to be introduced in late stages of the development of a sys-
tem. By then many security flaws are difficult to detect and fix. The research
in this effort complements those approaches, and is based on the information-
flow approach to security. By imposing constraints on the flow of information
it is possible to express confidentiality and integrity requirements. While the
information-flow approach has been used in language-based security tech-
niques, since it provides implementation-independent guarantees it can also
provide a basis for the analysis of security aspects of the architecture of a
system.

In [1, 2] Goguen and Meseguer laid the formal foundation for this ap-
proach. They introduced the notion of noninterference. Intuitively, A is
noninterfering with B if the actions of A have no effect on the observations
of B. This provides confidentiality for A, and integrity for B. Over the years
variants of noninterference have been introduced for various technical rea-
sons. They all have the same basic intuition, and collectively are known as
information-flow properties. Whenever they hold, many subtle attacks that
exploit programs using legitimate access to data simply are ruled out.

Information-flow properties do not fall within the domain of safety and
liveness properties. These are properties of single traces, while information-
flow properties are closure properties of sets of traces. Therefore, theories of
composition of safety and liveness properties do not apply to information-flow
properties. In general, these are not preserved under composition. However,
disparate treatments have shown that some information-flow properties, or
restrictions of them, do compose [3, 4, 5, 6, 7]. Mantel has proposed a uni-
fying treatment of information-flow properties [8, 9], in which these previous
results can be rederived, and which also makes possible the definition of
new information-flow properties, and the derivation of their compositional
properties.

With Mantel’s security framework as the theoretical foundation on secu-
rity, we have developed models and techniques for the specification and anal-
ysis of information-flow properties of component-based architectures. The
goal was to develop lightweight, rigorous formal methods that could be used

3

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

to explore the design space of secure systems.
Our formalization is based on the Maude system [10, 11], which is a

formal, executable language and set of tools based on rewriting logic [12, 13].
This is a general, but simple, logic of concurrent change that has been shown
to be a good logical and semantic framework [14]. Among its appealing
features in formalizing logics and systems is that it does not prescribe a
particular syntax. So one can define the most simple and natural syntax for
the particular logic or system of interest.

A logic or concurrent system is specified by a rewrite theory R = (Σ, E,R),
in which (Σ, E) is an equational theory that specifies the states of the system,
and R is a set of rewrite rules of the form t→ t′ that specify basic concurrent
transitions that transform fragments of a state.

In this work the objective was to investigate and develop suitable inference
systems for the analysis of information-flow properties of component-based
architectures. An inference system is formalized as a rewrite theory in which
the equational theory (Σ, E) specifies a component-based architecture, with
the security properties each component satisfies, and the rewrite rules rules R
capture results from the security framework proposed by Mantel. In design-
ing a secure system the question is whether secure components yield a secure
system. For the inference systems we have developed, executing the specifi-
cation of a component-based architecture deduces properties of composites
of the components. A secure system would be represented by a single com-
posite component that would include all the components of the architecture,
along with the information-flow properties it satisfies.

A designer of a component-based architecture might want to check whether
it satisfies one or more information-flow properties. In the formal systems
we have developed, pattern-based queries can be used to explore the prop-
erties of an architecture. Given the specification of an architecture and a
query, the system would automatically generate the proofs needed to answer
the query. Should an architecture not satisfy desired properties, a designer
could make modifications, and again query the system. Thus, the models and
techniques we have developed support the exploration of the design space of
security architectures. Furthermore, though the security underpinnings and
the formalizations are rigorous, the specifications are object-based and easy
to understand, and the proofs are generated automatically from queries. Our
models and techniques thus provide lightweight, rigorous, formal support for
the design of secure systems.

4

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

3 METHODS, ASSUMPTIONS, AND PRO-

CEDURES

3.1 Information-Flow Security

A component or system is formalized in Mantel’s framework as an event
system ES = (E, I,O,Tr), where E is a set of events, I, O ⊆ E are the
sets of input and output events, respectively, and Tr ⊆ E∗ is the set of
traces or finite sequences over E. A security policy is concerned with a set of
security domains, for example, for the intruder, and for one or more different
kinds of legitimate user of the system. For each domain, the set of events
E is partitioned into three sets according to how information flows to that
domain: the set V of events that are directly visible from that domain, the
set C of events that are confidential or kept secret from that domain, and the
set N of remaining events, which are neither, but which may be deducible.
Such a triple of sets ν = 〈V,N,C〉 is called a view.

Basic Security Predicates (BSPs) [8, 9] are elementary information-flow
properties. They are closure properties parametric on views. Given a trace
of the system, they require that other traces be among the behaviors of
the system, Tr . Each BSP requires enough possible traces to prevent an
adversary from deducing information of a particular kind. It is defined in
terms of the sets of the view, and some have other subsets of E as additional
parameters. For some, the required traces are constructed from given ones by
inserting events in some prescribed way: BSI ,BSIAρ,FCI∇,∆,Υ. For others,
it is by deleting events from the given trace that the required one is obtained:
R,BSD ,FCD∇,∆,Υ.

Information-flow properties can be defined in terms of views and a se-
curity predicate, where a security predicate defines a closure property that
guarantees in some technical sense the information flow specified by a view. A
security predicate can be defined as the conjunction of one or more BSPs. Se-
curity properties known from the literature have been defined by such conjuc-
tions. For example, separability is defined as BSDνLHL

(Tr) ∧ BSIAρC
νLHL

(Tr).

That is, separability requires that the set of traces Tr be closed under two
elementary closure properties (BSD ,BSIAρC) defined in terms of the view
νLHL , which is the view for the domain of low-level events, L, in a flow policy
that has another domain, H, of high-level events.

5

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

3.2 An Object-Based Model of Security Architectures

We developed an inference system that given a specification of a component-
based architecture, along with the security properties each component satis-
fies, deduces the global security properties the architecture satisfies, if any.
Each component is represented by one object for each BSP it satisfies.

For example, suppose there is a component X = (E, I,O,Tr) that satis-
fies the separability property defined above, that is, it satisfies BSDνLH

L
(Tr)

and BSIAρC
νLH
L

(Tr). This component is specified by the following objects of

classes BSD and BSIA.
< X : BSD | < X : BSIA |

interface : [e E, i I, o O], interface : [e E, i I, o O],

view : [v V, n N, c C] > view : [v V, n N, c C],

rho-view : R >

These objects represent assumptions that component X satisfies BSD and
BSIAρC in view [v V, n N, c C] = νLHL , where the value of function ρC
applied to the view is the set of events R.

Theorems in [9] define an ordering on BSPs by implication, under what
conditions BSPs satisfied by components are preserved under composition,
and under what conditions BSPs are trivially satisfied. These theorems are
formalized in Maude as rewrite rules of the form:

l : t→ t′ if cond

where t and t′ are configurations of objects denoting security properties of
components. If the condition cond is true the security property represented
by t implies the security property represented by t′. Proofs are constructed
by the application of these rules.

There is a class for each BSP, which are subclasses of class BasicSecProp,
which is a subclass of SecurityProp. New subclasses of SecurityProp can
be introduced for security properties defined by conjunction of BSPs.

Given the specification of a component-based security architecture, it
is possible to deduce further properties that the components satisfy, and
properties that various composites of the components satisfy. Using Maude’s
search command to query the system about security properties of interest,
the system would automatically generate proofs by the application of the
rewrite rules that formalize the theorems in [9], and it would return the one
or more solutions requested, or report that no solution to the query was
found.

6

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

For example, suppose we have two components, with identifiers X and Y,
respectively. The specification of the component-based architecture would
include one object for each BSP that each of these components satisfy. In
general, information-flow properties are not preserved by composition. In our
model the satisfaction of security properties by components is represented
by objects in the configuration that describes the architecture. A composite
of components X and Y has identifier X . Y. We can use this identifier to
investigate which properties, if any, this composite satisfies.

If it satisfied some BSP the configuration would include some object of a
class corresponding to a BSP that would have the identifier X . Y. Then to
learn whether it satisfies any BSP, we would submit the following query:

search architecture =>*

[< X . Y : Prop:BasicSecProp | Atts:AttributeSet >

C:Configuration] .

The term architecture defines the component-based architecture, a con-
figuration that includes X and Y, and equations that identify output events
of one connected to input events of the other. The pattern in the query
has an object with id X . Y of some subclass of BasicSecProp, represented
here by the variable Prop, which takes as value the name of any subclass of
BasicSecProp. Failure to find a solution indicates that the composition of
X and Y satisfies no BSP, and thus no security property.

Should this query not fail, we could investigate further the security as-
pects of the composite. Information-flow properties are satisfied in particular
views, which define how information flows to some domain, for example the
intruder, or some kind of legitimate user. The views of the components in-
duce a set of possible views for systems composed from them. A query could
specify a particular view, or a pattern for it. As in the following example:

search architecture =>*

[< X . Y : BSD |

view : [v V:EventSet, n N:EventSet , c c12],

Atts:AttributeSet >

C:Configuration] .

which seeks to determine whether the composite satisfies the basic security
predicate BSD in some view that keeps the events in the set c12 secret.

An information-flow property can be defined in terms of BSPs, and a new
subclass of SecurityProp can be introduced for it. Then queries could check
for the satisfaction of this new property. With these kinds of queries it is
possible to explore the design space for some application or system.

7

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

3.3 A Modular and Reflective Model of Security Ar-
chitectures

Though the model described above supports the exploration of the design
space, it suffers from the state-space explosion problem. Various optimiza-
tions ameliorated the problem, but the search for more fundamental and
effective solutions led to the model described in this section.

Separation of concerns suggests that the specification of the architecture
of a system be layered: one layer for the underlying components and how
they are connected, and another for the security properties of the components
and how they are composed. For each a formal object-based specification is
natural. The relative notion of component suggests further elaboration of the
model. A component may be very simple and atomic, or may be composed
of other simpler components. Thus, it is natural to introduce hierarchical
models.

The purpose of the architectural models we developed was to investigate
techniques to derive their global properties from the properties of their com-
ponents. This is achieved by the transformation of the architecture into a
single composite component whose properties would be global properties of
the given architecture. In a model in which the architecture has a base layer
and a security layer, the transformation of the base layer is accomplished
through operations derived from the composition of event systems, while the
transformation of the security layer is accomplished through transitions de-
rived from Mantel’s compositional results. The base layer is concerned with
the sets of events of its components. The security layer is concerned with
the security properties of the base components. The connection between
the two layers comes through views: a view partitions the set of events of a
component, and a security property holds for particular views.

Base Layer. The base layer represents a component-based architecture as
a configuration of objects that is of sort (or type) ArchConf. Each compo-
nent is represented by an object of class Component, and connections be-
tween a pair components are represented explicitly by a single object of class
Connection.

sorts ComponentSet ConnectionSet ArchConf .

subsorts ComponentSet ConnectionSet < ArchConf < Configuration .

Components may be very simple and atomic, or may be implemented by
some architecture. Thus, a Component object has two attributes: interface

8

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

and implementation, which is a term of sort ArchConf, but ”frozen”, not
subject to transitions.

The configuration that models an architecture represents a graph in which
the edges are defined by the identifiers of the objects. For example, given
components with ids X and Y there may be at most one connection between
them, whose id would be < X, Y >. This defines edges between connection
< X, Y > and component X, and between connection < X, Y > and com-
ponent Y. This connection specifies how output events of component X are
connected to input events of Y, if any, and how output events of component
Y are connected to input events of X, if any. These three objects specify a
composition that leads to the creation of an object of class Component with id
< Y, X >. As part of the transformation induced by this composition these
objects migrate from the main configuration to be nested as the value of the
implementation attribute of the new Component, where they are no longer
subject to rewrites or transformations. Furthermore, the architectural invari-
ant is reestablished: every connection must connect exactly two components
in that configuration, and there may be at most one connection between any
two components.

That the composite component nests the architectural configuration that
induced its composition serves two purposes. First, it documents that the
nested configuration has the interface [e E, i I, o O] given in that object.
As we consider in the security layer the security properties of this nested
component-based architecture, the relevant views will be ones that partition
this set E of events. Second, since the nested configuration is no longer
subject to rewrites, the reduction of the search space for the application of
rewrite rules results in more efficient transformation techniques.

The ids of objects in the architectural configuration are structured, and
can become deeply nested as sequences of compositions are performed. A
lexicographic order on ids is defined, and for any connection < X, Y >, id X

precedes id Y in that ordering. Ids not only serve to define the edges of the
graph, but the id of an object encodes the sequence of transformations that
led to its creation.

Security Layer. The base layer consists of components and connections.
The security layer has corresponding elements: some that represent the se-
curity properties a component satisfies, and others that impose constraints
on the composition of security properties of connected components. The

9

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

security layer is connected with the base layer through views.
Given the security properties of the base components, and constraints on

the connections between them, the goal is to deduce global security properties
of the security architecture. These follow from the compositionality results
for BSPs. These are parametric on views, and there are some constraints on
views of components whose security properties would be composable. First,
whenever an output of one component is connected to an input of another,
the two events are identified. This means that views for these components
must agree on these events. Second, given views ν1 = 〈V1, N1, C1〉 and ν2 =
〈V2, N2, C2〉, any composition of BSPs that hold in these views requires that
N1 and N2 be disjoint.

Then every connection in the base layer imposes constraints on the views
of the connected components. Therefore corresponding to Connection ob-
jects in the base layer there are objects of class ViewConnection in the
security layer. They have the following form:

< [< X, Y >, N] : ViewConnection |

v : < e1-x, e1-y > . . . < en-x, en-y >,

c : < e1-x’, ed1-y’ > . . . < em-x’, em-y’ >,

Atts >

A ViewConnection defines subviews for matching events of connected base
components. Matching events in the v attribute are assigned to be events in
the visible component of a view, while those in the c attribute are assigned
to be confidential.

A Component object has a single interface, a triple [e E, i I, o O],
comprising the set of all events, and the sets of input and output events of
the component. There may be, however, more than one view to partition E.
For each view ν one or more BSPs may hold; for example, BSIν and Rν .
Statements about what security properties hold in a view are represented as
objects of the class ViewSecProp. Consider the following example:

< [1 : 2] : ViewSecProp |

c-view : CV,

u-view : UV,

properties : BSI | R,

Atts >

This is a statement about a view ν2 for the base component 1. There are
other views for this component, at least ν0 and ν1. Each view is partitioned
into a view for its connected events, c-view, and a view for the unconnected

10

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

events, u-view. This object states that BSI and R hold in ν2, that is, BSI ν2
and Rν2 .

In the base layer a composition is specified by a connection < X, Y > and
the two components it connects, X and Y. In the security layer a correspond-
ing composition is much more complex, but it involves a ViewConnection

with id [< X, Y >, Nl] and ViewSecProp objects with ids [X : Nl1] and
[Y : Nl2]. While composition in the base layer creates a Component object
with id < Y, X >, one of the corresponding compositions in the security layer
results in a ViewSecProp object with id [< Y, X > : Nl’], which gives se-
curity properties that the composite component < Y, X > satisfies.

As the model described in the previous section, this model can support the
exploration of the design space of applications and systems. In addition, since
it is layered, graph-based, and hierarchical it better captures the structure of
the architecture, and relations between various views and security properties.
Furthermore, it makes possible some optimization techniques in a simple and
natural way.

11

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

4 RESULTS AND DISCUSSION

We developed models and inference systems for the analysis of information-
flow security properties of component-based architectures.

A first class of models is object-based, and represents components of
the architecture as configurations of objects of classes that represent BSPs.
This formalization supports the exploration of the design space of applica-
tions or systems by pattern-based queries. Several models were developed to
ameliorate the state-space explosion problem. They included parameterized
specifications that could be tailored for an application.

A second class of models, also object-based, is layered, graph-based,
and hierarchical. A base layer captures the structure of the underlying
component-based architecture. A security layer captures the structure of
the corresponding information-flow security properties. This formalization
also supports the exploration of a design space. In addition, the hierarchi-
cal nature of both layers offered a natural and significant way to reduce the
search space of the graph-transformation techniques.

12

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

5 CONCLUSIONS

This research is a contribution towards formal methods to support the de-
velopment of secure systems. It complements language-based methods and
implementation-dependent techniques that can be applied only late in the
development process. The models and inference systems we developed offer
formal support for the exploration of the design space of component-based
architectures. The specification and analysis of architectures is possible be-
cause this work is based on the information-flow approach to security, which
is implementation-independent. The formal methods developed are rigorous,
yet lightweight. They are rigorous due to their underlying foundation on se-
curity: Mantel’s modular framework for the composition of information-flow
properties, and to their formalization in the Maude, a language and system
based on rewriting logic, which is a general, yet simple, logic of concurrent
change. They are lightweight due to their object-based formalization, and
automated generation of proofs induced by pattern-based queries. Some of
the techniques developed in this work could be of benefit in other kinds of
applications.

13

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

6 REFERENCES

References

[1] Joseph A. Goguen and José Meseguer. Security Policies and Security
Models. In IEEE Symposium on Security and Privacy, pp 11–20, 1982.

[2] Joseph A. Goguen and José Meseguer. Inference Control and Unwinding.
In IEEE Symposium on Security and Privacy, pp 75–86, 1984.

[3] D. McCullough. Specifications for Multi-Level Security and a Hook-Up
Property. In IEEE Symposium on Security and Privacy, pp 161–166,
1987.

[4] D. McCullough. A Hookup Theorem for Multilevel Security. In IEEE
Transactions on Software Engineering,16(60, 1990.

[5] J. McLean. A General Theory of Composition for Trace Sets Closed un-
der Selective Interleaving Functions. In IEEE Symposium on Research in
Security and Privacy, pages 79–93, 1994

[6] J. McLean. A General Theory of Composition for a Class of ”Possibilis-
tic” Security Properties. IEEE Transactions on Software Engineering,
22(1):53–67, 1996.

[7] A. Zakinthinos and E. S. Lee. A General Theory of Security Properties.
In IEEE Symposium on Security and Privacy, pages 94–102, 1997.

[8] Heiko Mantel. Possibilistic Definitions of Security — An Assembly Kit.
In IEEE Computer Security Foundations Workshop, pages 185–199, May
2000.

[9] Heiko Mantel. On the composition of secure system. In Proceedings of the
IEEE Symposium on Security and Privacy, pages 88–101, May 2002.

[10] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer,
and C. Talcott. All About Maude — A High-Performance Logical Frame-
work, How to Specify, Program and Verify Systems in Rewriting Logic.
Springer, 2007.

14

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

[11] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer,
and C. Talcott. Specification and Programming in Rewriting Logic. The-
oretical Computer Science, 285, no. 2, Elsevier, 2002.

[12] José Meseguer. Conditional rewriting logic as a unified model of concur-
rency. Theoretical Computer Science 96(1) (1992) pp. 73–155.

[13] Roberto Bruni and José Meseguer. Generalized rewrite theories.1 In Pro-
ceedings of ICALP’03, in Lecture Notes in Computer Science, vol. 2719,
2003, pp. 252–266.

[14] Narciso Mart́ı-Oliet and José Meseguer. Rewriting logic as a logical and
semantic framework. In: Gabbay, D.M., Guenthner, F. (eds.) Handbook
of Philosophical Logic, vol. 9, 2nd. edn., pp. 1–87. Kluwer Academic
Publishers, Dordrecht (2002)

[15] Narciso Mart́ı-Oliet and José Meseguer. General logics and logical frame-
works. In: Gabbay, D. M. (ed.) What is a Logical System? Studies in
Logic and Computation, vol. 4, pp. 355–392. Oxford University Press,
Oxford (1994)

15

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

LIST OF ACRONYMS

• BSP — Basic Security Predicate

16

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

